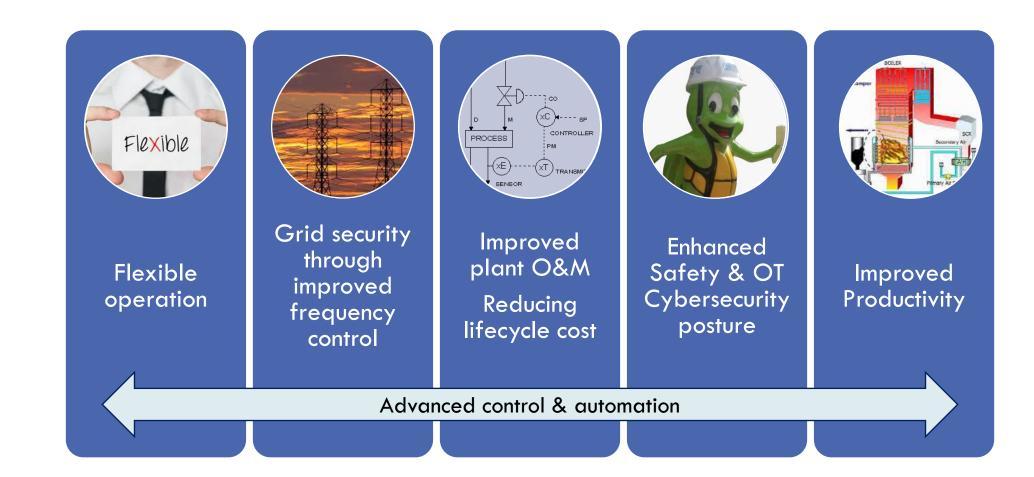
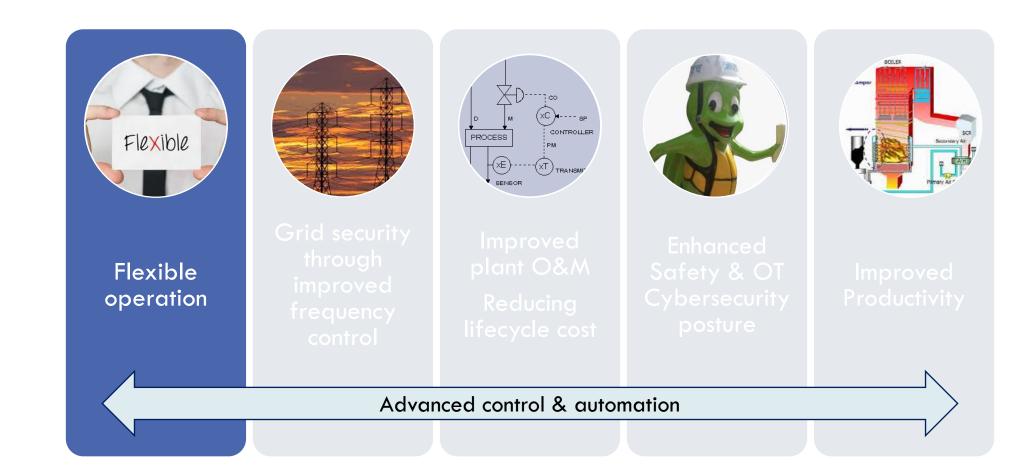


Advanced control & automation in power sector -Raj Seth, DGM (Project Engineering-C&I)

Role of Advanced control & automation





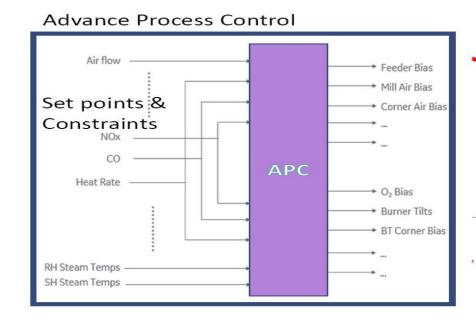
Advance Process Control (APC)

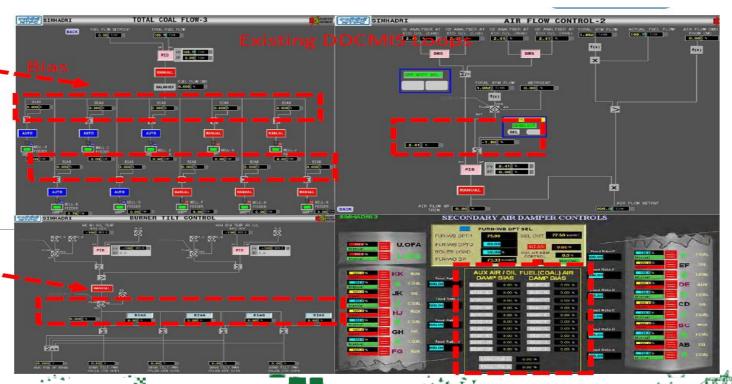
SH/RH temperature control for excursion reduction in modified sliding pressure operation (STO)

Unit control for faster ramp up/ramp down reducing throttle pressure deviations (URO)

Closed loop combustion optimization to improve marginal contribution (CO)

Optimum soot blowing based on heat transfer coefficients & self cleaning factor


Tighter control of steam temp., pressure, improved heat rate-at Simhadri-II (2*500 MW)


Advance Process Control (APC)

- Non-linear process, dynamic behaviour, influenced by multiple unit parameters
- Steam Temperature Optimizer (STO)
- Combustion optimization (CO)
- Unit Response Optimization (URO)
- Soot blowing optimization (SBO)

- ✓ Fuzzy logic or Neural network-based controller
 ✓ State-space controller with self-adaptation of in
- ✓ State-space controller with self-adaptation of internal parameters
- ✓ Generates bias

TRANSFORM

Thermal units Ramping through AutomatioN and Scheduling of mills in Flexible Operation RegiMe (TRANSFORM)

Objectives of TRANSFORM:

- Automatic selection of mills for start-up/shutdown.
- Automatic start-up/shutdown of coal mills during load ramping operation
- Automatic loading/unloading of feeders at optimum rate 31

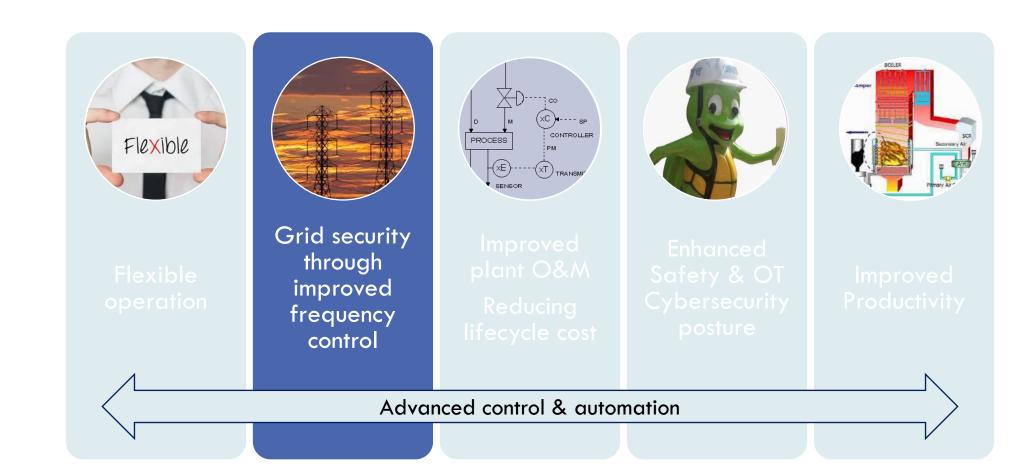
Design aspects:

- ✓ Optimum no. of mills for different coal quality
- Timely cut-in/cut-out of mills.
- Imitates Best operator actions and intelligence.

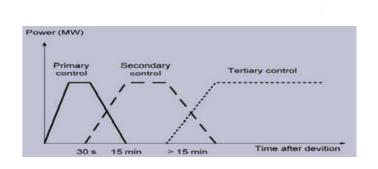
Boiler and Turbine health monitoring system

Boiler health monitoring system:

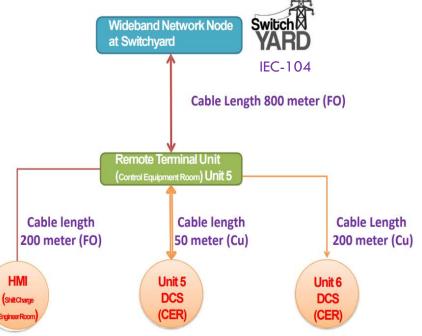
- Assessing boiler's remaining life by accounting for fatigue and creep damage
- Monitoring stress in boiler thick-walled components


Equivalent operating hours of turbine:

 Monitors stresses due to startup & shutdowns and load cycling


Ancillary services

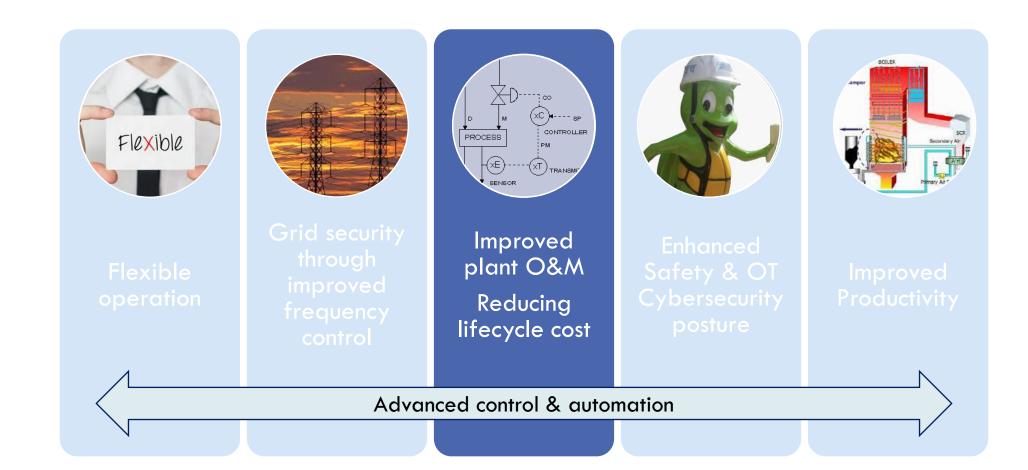
Primary Reserve Ancillary Services (PRAS)


- Restricted Governing Mode of Operation (RGMO)
- Free Governing Mode of Operation (FGMO)

Frequency Response of 2x500 MW Units 50.05 50.00 970 960 950 950 949.95 49.80 920 Generation Freq 910 00:28:83 00

Secondary Reserve Ancillary Services (SRAS)

- Automatic Generation Control (AGC)
- Load demand from RLDC





Fieldbus based DCS, Actuators, Instruments

An all-digital multi-drop bi-directional serial bus that connects microprocessor-based control and Intelligent field devices

Open Process Automation Standard (OPAS)

- Group of industry end users, suppliers, integrators, academia, and standards organizations.
- Evolve an open architecture and specification, develop Standard of Standards
- Open, interoperable and secure architecture for industrial process automation systems.

Operations costs Competitiveness

- · Imperative to lower capital + lifecycle costs
- Pressure to increase profitability from operations

Systems are closed

- · Costly to integrate new capabilities
- · Data not readily accessible
- · High operational costs for maintenance and upgrades

Security was an afterthought

· Security is often bolted on, not designed into architecture

Improved Operations

- Easy migration and upgrade path
- · Certified software and hardware component interfaces

Open **Systems**

- Multi-vendor interoperability
- Future proof

Pervasive Security

- Holistic security framework
- · Designed and integrated from the beginning

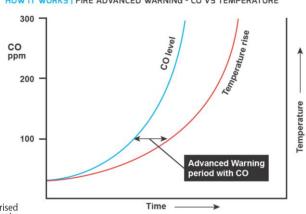
Naturally Occurring Gamma Sensors (NOGS)

NOGS Sensors installed at Economizer hoppers for volumetric measurement of Ash quantity

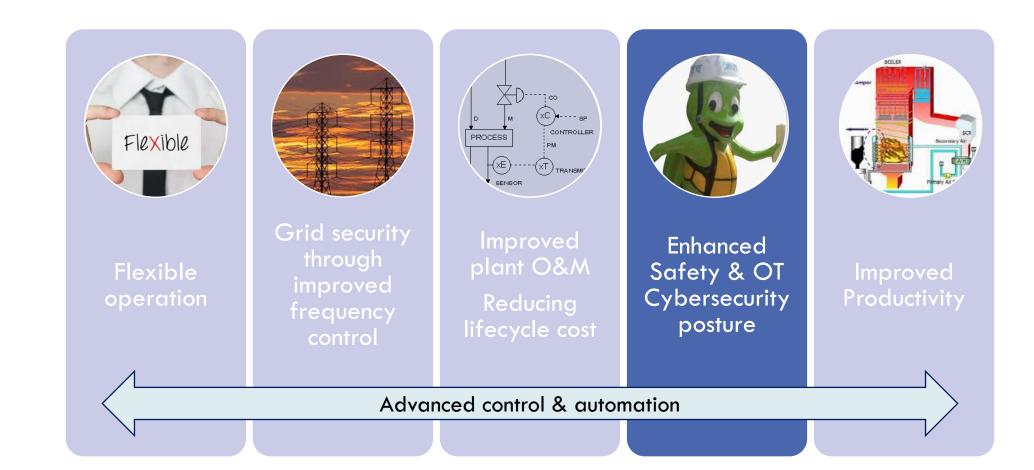
Quantity/ Level of Fly Ash <mark>∝</mark> Number of Gamma Ions

CPS on NOGS Sensor

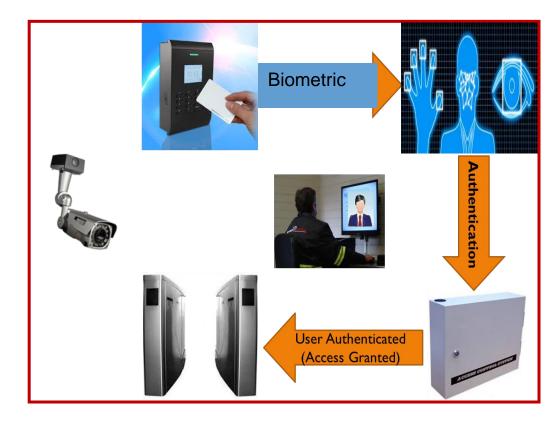
4-20mA output / Relay


CO based mill fire detectors

- Biomass-High volatile content
- Enhances fire-explosion risk in mills
- Smouldering combustion increase CO levels
- Mill outlet Temperature increase after spontaneous combustion
- Early fire detection POC: CO based fire detectors



CCTV with analytics, Access control and Drone based Surveillance



- > CCTV with video analytics
 - √ Video motion detection
 - ✓ Object classification & Tracking
 - ✓ PPE analytics (for fixed cameras in switchgear rooms)
- > Drone based surveillance:
 - ✓ For monitoring project activities
 - ✓ Erection progress
- Biometric based Access control:
 - √ For central equipment room
 - ✓ Programmer room

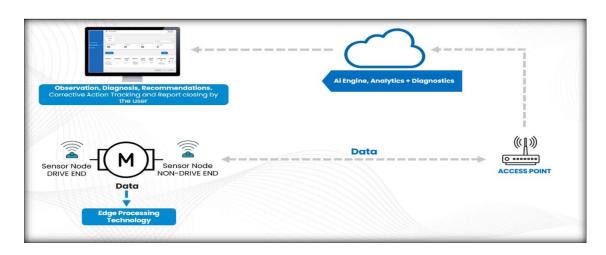
Cybersecurity

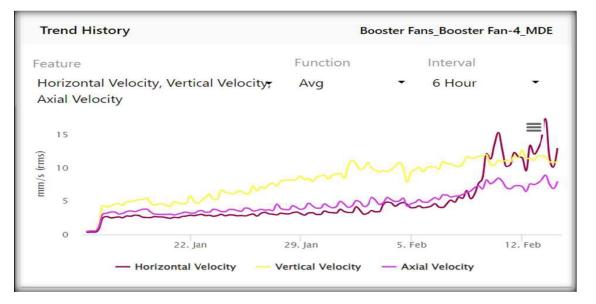
- Compliance measures for Guidelines/directives from CEA/CERT-in/NCIIPC.
- Upgradation of obsolete/legacy systems
- Implementation of Cyber security suite comprising of
 - Asset inventory & Anomaly detection solution: deep packet inspection at purdue layers 1,2 & 3 providing
 Continuous Threat Detection.
 - Security information and event management (SIEM): Monitoring of logs/events etc. at a plant level
 Dashboard, uses machine learning to detect unusual user and entity behavior
 - Malware protection by strict application whitelisting
 - Unidirectional data transfer across OT-IT using Hardware enforced Data diode solution
 - Centralized patch management using Windows server update service
 - Centralized user management by Active directory/Domain controller & role-based access control
 - O Backup & recovery solution: copies of every single system on the network have a full system state backup

IIOT based Predictive Maintenance Solution

Triaxial vibrations, temperature information fed to cloud app

Fault identification through spectral and trend analytics


Alerts, report and recommendations

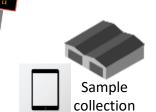

Corrective action to mitigate alerts

Continuous health monitoring without human intervention Advanced diagnostics: Reduces need of expert vibration engineer

Reduced Downtime: Early warning helps minimize equipment downtime.

Cost Savings: Reduces emergency repairs, prevents unnecessary replacements

Coal Transportation System



Mines data is captured at Mine exit along with GPS installation

Automated Gate-Pass

Vehicles enters the plant without human intervention.

Plant Queue

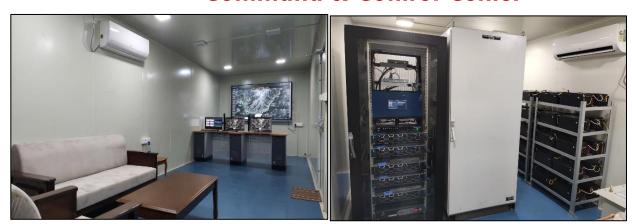
RFID

PLANT

Unloading Area

Railway Siding

Command and control



Early Warning system for Hydro projects

Command & Control Center

Fully Automated Process

Data shared with Disaster Management CR on real time basis

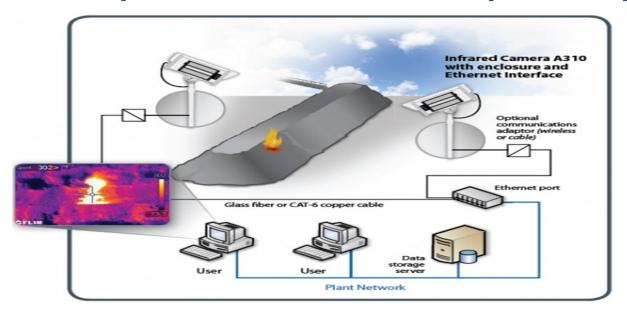
High Reliability & Availability

- Sensors 100% Redundancy
- VSAT & Cellular Communication
- Solar Power with Battery Backup

Multiple Warning Dissemination Modes

- Motorized Sirens & PA systems
- Automated Voice Calls, Messages & emails

Future modules Flood Forecasting
Environmental Seismology


Advanced Monitoring of Stockyard (AMS)


Digital Solutions for Stockyards :

 3D Profiling of Coal Stockyard for volumetric analysis

Hotspot detection & Automatic Sprinkler Operation

Unmanned operation of SR Machines

Advanced Monitoring of Stockyards Benefits

3D Profiling

Quick Stock Reconciliation Optimized Inventory Management

Optimized Stockyard Utilization

Hot spot Detection & Automatic Sprinkler Operation

Pin-pointing hotspot formation

Optimized Fire Water Usage

Minimizing GCV Loss

Man-less
Operation of
Stacker Reclaimer

Savings in operator Cost

Reduced Dozer Operations for pile dressing Enhancing
Safety for
Machine and
Operator

Thank You

Raj Seth DGM (PE-C&I)

CC-EOC, Secunderabad

E mail: rajseth@ntpc.co.in